Author Affiliations
Abstract
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
2 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
4 e-mail: zh.zhang@hebut.edu.cn
5 e-mail: sunxj@ciomp.ac.cn
In this work, a self-powered GaN-based metal-semiconductor-metal photodetector (MSM PD) with high responsivity has been proposed and fabricated. The proposed MSM PD forms an asymmetric feature by using the polarization effect under one electrode, such that we adopt an AlGaN/GaN heterojunction to produce the electric field, and by doing so, an asymmetric energy band between the two electrodes can be obtained even when the device is unbiased. The asymmetric feature is proven by generating the asymmetric current-voltage characteristics both in the dark and the illumination conditions. Our results show that the asymmetric energy band enables the self-powered PD, and the peak responsivity wavelength is 240 nm with the responsivity of 0.005 A/W. Moreover, a high responsivity of 13.56 A/W at the applied bias of 3 V is also achieved. Thanks to the very strong electric field in the charge transport region, when compared to the symmetric MSM PD, the proposed MSM PD can reach an increased photocurrent of 100 times larger than that for the conventional PD, even if the illumination intensity for the light source becomes increased.
Photonics Research
2021, 9(5): 05000734
Author Affiliations
Abstract
1 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
2 Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China
3 State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
The tilted energy band in the multiple quantum wells (MQWs) arising from the polarization effect causes the quantum confined Stark effect (QCSE) for [0001] oriented III-nitride-based near ultraviolet light-emitting diodes (NUV LEDs). Here, we prove that the polarization effect in the MQWs for NUV LEDs can be self-screened once the polarization-induced bulk charges are employed by using the alloy-gradient InxGa1-xN quantum barriers. The numerical calculations demonstrate that the electric field in the quantum wells becomes weak and thereby flattens the energy band in the quantum wells, which accordingly increases the spatial overlap for the electron-hole wave functions. The polarization self-screening effect is further proven by observing the blueshift for the peak emission wavelength in the calculated and the measured emission spectra. Our results also indicate that for NUV LEDs with a small conduction band offset between the quantum well and the quantum barrier, the electron injection efficiency for the proposed structure becomes low. Therefore, we suggest doping the proposed quantum barrier structures with Mg dopants.
230.3670 Light-emitting diodes 230.5590 Quantum-well, -wire and -dot devices 
Chinese Optics Letters
2019, 17(12): 122301
田康凯 1,2楚春双 1,2毕文刚 1,2张勇辉 1,2,**张紫辉 1,2,*
作者单位
摘要
1 河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401
2 天津市电子材料和器件重点实验室, 天津 300401
国家自然科学基金、河北省自然科学基金、天津市自然科学基金、人社部留学人员科技活动项目择优资助优秀类、河北省计划项目、河北省高校百名优秀创新人才支持计划;
光学器件 AlGaN 深紫外发光二极管 外量子效率 空穴注入效率 光输出功率 
激光与光电子学进展
2019, 56(6): 060001
Author Affiliations
Abstract
1 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China
2 e-mail: zh.zhang@hebut.edu.cn
3 Department of Photonics and Institute of Electro-Optical Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
4 Department of Electrical Engineering and Computer Sciences and TBSI, University of California at Berkeley, Berkeley, California 94720, USA
It is well known that the p-type AlGaN electron blocking layer (p-EBL) can block hole injection for deep ultraviolet light-emitting diodes (DUV LEDs). The polarization induced electric field in the p-EBL for [0001] oriented DUV LEDs makes the holes less mobile and thus further decreases the hole injection capability. Fortunately, enhanced hole injection is doable by making holes lose less energy, and this is enabled by a specifically designed p-EBL structure that has a graded AlN composition. The proposed p-EBL can screen the polarization induced electric field in the p-EBL. As a result, holes will lose less energy after going through the proposed p-EBL, which correspondingly leads to the enhanced hole injection. Thus, an external quantum efficiency of 7.6% for the 275 nm DUV LED structure is obtained.
Photonics Research
2019, 7(4): 040000B1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!